Publications (A* and Q1) and pre-prints

(2024). Light Unbalanced Optimal Transport. In NeurIPS 2024.

PDF Cite OpenReview

(2024). Energy-Guided Continuous Entropic Barycenter Estimation for General Costs. In NeurIPS 2024 (Spotlight, Top 25%).

PDF Cite OpenReview

(2024). Rethinking Optimal Transport in Offline Reinforcement Learning. In NeurIPS 2024.

Cite OpenReview

(2024). Light and Optimal Schrodinger Bridge Matching. In ICML 2024.

PDF Cite Code OpenReview

(2024). Estimating Barycenters of Distributions with Neural Optimal Transport. In ICML 2024.

PDF Cite Code OpenReview

(2024). Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem. A pre-print.

PDF Cite

(2024). Neural Optimal Transport with General Cost Functionals. In ICLR 2024.

PDF Cite OpenReview

(2024). Light Schrödinger Bridge. In ICLR 2024.

PDF Cite Code OpenReview

(2024). Energy-guided Entropic Neural Optimal Transport. In ICLR 2024.

PDF Cite Code OpenReview

(2024). Adversarial Schrödinger Bridge Matching. In NeurIPS 2024.

PDF Cite OpenReview

(2024). Optimal Flow Matching - Learning Straight Trajectories in Just One Step. In NeurIPS 2024.

PDF Cite OpenReview

(2023). Extremal Domain Translation with Neural Optimal Transport. In NeurIPS 2023.

PDF Cite Code Poster Video OpenReview

(2023). Entropic Neural Optimal Transport via Diffusion Processes. In NeurIPS 2023 (Oral, Top 3%).

PDF Cite Code Video OpenReview

(2023). Building the Bridge of Schrödinger: A Continuous Entropic Optimal Transport Benchmark. In NeurIPS 2023.

PDF Cite Code Poster Video OpenReview

(2023). Neural Optimal Transport. In ICLR 2023 (Spotlight, Top 25%).

PDF Cite Code Poster Video OpenReview

(2023). Kernel Neural Optimal Transport. In ICLR 2023.

PDF Cite Code Poster Video OpenReview

(2022). Wasserstein Iterative Networks for Barycenter Estimation. In NeurIPS 2022.

PDF Cite Code Video OpenReview

(2022). Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?. In NeurIPS 2022.

PDF Cite Code Video OpenReview

(2022). Mixability of integral losses: A key to efficient online aggregation of functional and probabilistic forecasts. In IEEE Journal of Biomedical and Health Informatics.

Cite IEEE

(2022). Generative Modeling with Optimal Transport Maps. In ICLR 2022.

PDF Cite Code Video OpenReview

(2021). Mixability of integral losses: A key to efficient online aggregation of functional and probabilistic forecasts. In Pattern Recognition.

PDF Cite ScienceDirect

(2021). Adaptive Hedging under Delayed Feedback. In Neurocomputing.

PDF Cite ScienceDirect

(2021). Manifold Topology Divergence: a Framework for Comparing Data Manifolds. In NeurIPS 2021.

Cite Code Video OpenReview

(2021). Large-Scale Wasserstein Gradient Flows. In NeurIPS 2021.

PDF Cite Code Poster Video OpenReview

(2021). Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark. In NeurIPS 2021.

Cite Code Poster Video OpenReview

(2021). Wasserstein-2 Generative Networks. In ICLR 2021.

PDF Cite Code Poster Video OpenReview

(2021). Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization. In ICLR 2021.

PDF Cite Code Poster Video OpenReview

(2020). Online algorithm for aggregating experts predictions with unbounded quadratic loss. In Russian Mathematical Surveys.

PDF Cite RMS